First Meeting of Courses
Fall Term 2016-2017

Classes Start: Wednesday, August 31, 2016

Online Check-In (formerly known as registration):
Monday, August 15, 2016 – Tuesday, August 30, 2016
Please visit the Harvard University Knowledge Center website for more information

Deadlines and Holidays: Please visit the GSAS Calendar to view deadlines and holidays for the 16-17 academic year

For information: Call 617-432-4134 or email dms_courses@hms.harvard.edu
DIVISION OF MEDICAL SCIENCES
Ph.D. Programs at Harvard Medical School
2016-2017 Fall Term Course Offerings

BBS 230. Analysis of the Biological Literature
Jesse Gray, Peter Hammerman, Dipanjan Chowdhury, Stephen Elledge, Radhika Subramanian Roberto Chiarle, Scott Kennedy, Andrew Lassar, Kevin Haigis, Alex Soukas, Frank Slack, Julie-Aurore Losman, Steve Haggarty, Jeff Dvorin and Mike Blower

BBS 301. Embedded Teaching Practicum (for Graduate Teaching Assistants)
Johanna Gutlerner and Ronald Jason Heustis

BBS 330. Critical Thinking and Research Proposal Writing
Monica P. Colaiácovo
Teaching Assistant: Doris Lui

BCMP 200. Principles of Molecular Biology
Joseph Loparo, Melissa Leger-Abram, Timur Yusufzai, Johannes Walter, Stirling Churchman and Dipanjan Chowdhury
Curriculum Fellow: Jason Heustis

BCMP 218. Molecular Medicine
Irving London, George Daley, and Vijay Sankaran

BCMP 228. Macromolecular NMR
Gerhard Wagner, James Chou and Haribabu Arthanari

BCMP 230. Principles and Practice of Drug Development
Stan Neil Finkelstein

Iain A. Drummond and Amar Sahay

Genetics 201. Principles of Genetics
Fred Winston, Thomas Bernhardt, Maxwell Heiman, Mitzi Kuroda, Steven McCarroll and Jenna Galloway
Curriculum Fellow: Emily Gleason

Genetics 229. Computational Statistics for Biomedical Sciences
Peter Park and Vincent Carey

HBTM 235. Principles of Human Disease: Physiology and Pathology
Constance L. Cepko

Immunology 201. Principles of Immunology
Thorsten Mempel, Michael Carroll, Ulrich H. Von Andrian and members of the Program in Immunology

Immunology 301. Immunology Seminar
Michael C. Carroll, William Nicholas Haining and Galit Alter
Medical Sciences 250ab. Human Functional Anatomy
Lee Gehrke, Trudy Van Houten, Breda Zimkus, Mohini Lutchman and Sabine Hildebrandt

Microbiology 205. Mechanisms of Microbial Pathogenesis
Clyde S. Crumpacker II and members of the Department

Microbiology 214. Mechanisms of Bacterial Pathogenesis and Host Immune Response
Marcia Goldberg, Jonathan Kagan, Michael Starnbach and Cammie Lesser
Curriculum Fellow: Bradley Coleman

Neurobiology 200. Neurobiology
John A. Assad and Matthew P. Frosch

Neurobiology 220. Cellular Neurophysiology
Bruce P. Bean, Wade G. Regehr, Bernardo L. Sabatini, and Gary I. Yellen

Neurobiology 230. Visual Recognition: Computational and biophysical perspective
Gabriel Kreiman

SHBT 200. Acoustics of Speech and Hearing
Satrajit Ghosh and Hideko Heidi Nakajima

SHBT 201. Biology of the Inner Ear
M. Charles Liberman and Stephane Maison

Virology 200. Introduction to Virology
Max L. Nibert, David M. Knipe and Priscilla L. Yang

Virology 202. Proposal Writing
Benjamin Gewurz, James DeCaprio, Daniel Lingwood, Sylvie LeGall and Molly Mclaughlin

OTHER COURSES OF INTEREST

OEB 115. The Developmental Basis for Evolutionary Change
Mansi Srivastava
BBS 230. Analysis of the Biological Literature
Jesse Gray, Peter Hammerman, Dipanjan Chowdhury, Stephen Elledge, Radhika Subramanian, Roberto Chiarle, Scott Kennedy, Andrew Lassar, Kevin Haigis, Alex Soukas, Frank Slack, Julie-Aurore Losman, Steve Haggarty, Jeff Dvorin and Mike Blower

4 units

(Fall term). Tu., Th., 3:00 – 6:00

Students participate in intensive small group discussions focused on the critical analysis of basic research papers from a wide range of fields including biochemistry, cell and developmental biology, genetics, and microbiology. Papers are discussed in terms of their background, significance, hypothesis, experimental methods, data quality, and interpretation of results. Students will be asked to propose future research directions, to generate new hypotheses and to design experiments aimed at testing them. For the midterm exam, the students will have to submit written critiques of recent papers from the literature, with an emphasis on proposing new experimental directions to test the models proposed in the papers.

Note: This course is required for first year BBS students, and is open only to BBS students.

Fall 2016
First Meeting Date: Thursday, September 8, 2016
Meeting Dates: Thursday, September 8 through Thursday, December 8
First Meeting Location: TMEC 250
Course Heads: Jesse Gray, gray@genetics.med.harvard.edu and Peter Hammerman, peter_hammerman@dfci.harvard.edu
BBS 301. Embedded Teaching Practicum (for Graduate Teaching Assistants)

Johanna Gutlerner and Ronald Jason Heustis

4 units

(Fall term). M., W., F., with different times

The Embedded Teaching Practicum aims to enhance the teaching experience for TAs and the learning experience for enrollees in the core BBS courses. While TAs serve different functions and experience teaching from different perspectives in each of our core courses, they collectively serve a vital role in helping to deliver a contemporary, high quality and accessible education to HMS graduate students. The embedded teaching practicum provides practice-based training in facilitating a group discussion, professionalism in the classroom, curriculum design, course evaluation, assessment development and DBER, and preparation for teaching throughout and beyond time in graduate school. Teaching assistants are provided training and experience in the development of an early-career teaching philosophy.

Note: TAs should contact Jason Heustis, ronald_heustis@hms.harvard.edu

Fall 2016
Meeting Dates: Wednesday August 31, 2016 through Wednesday December 14, 2016
First Meeting Location: TBD
Course Heads: Johanna Gutlerner, johanna_gutlerner@hms.harvard.edu and Jason Heustis, ronald_heustis@hms.harvard.edu
BBS 330. Critical Thinking and Research Proposal Writing
Monica P. Colaiácovo

4 units

(Fall term). First Lecture – Th., 2:00 – 4:00, subsequent sessions will be defined later

A small group tutorial systematically guiding students in the writing of original, hypothesis-driven research proposals from initial topic selection through completion of a final draft.

Note: This course is required for second year BBS students, others need permission of the instructor. Dates, times, and locations for all sessions (except for Session 1, see below) will be determined by the faculty running the tutorial sessions. Students will be able to sign up for their specific groups on a first-come, first-served basis. The BBS office will coordinate this process. Group assignments will be posted on the course website.

Recommended Prep: Check course website for downloadable material

Fall 2016
First Meeting Date: Thursday, September 8, 2016
Meeting Dates: Thursday, September 8, 2016 through Friday, December 16, 2016
First Meeting Location: NRB, Room 350
Course Head: Monica P. Colaiacovo, mcolaiacovo@genetics.med.harvard.edu
Teaching Assistant: Doris Lui
Biological Chemistry and Molecular Pharmacology

BCMP 200. Principles of Molecular Biology
Joseph Loparo, Melissa Leger-Abraham, Timur Yusufzai, Johannes Walter, Stirling Churchman and Dipanjan Chowdhury

4 units. Enrollment limited to 80

(Fall term). M., W., F., 10:45 – 12:15

Principles of Molecular Biology is a course organized around the Central Dogma of Biology with presentations covering fundamental aspects of DNA and RNA structure, their function and their interactions with proteins. The course opens with a discussion of the physical and chemical properties that drive the interactions of proteins with nucleic acids. This is used as a basis for understanding the material presented in the subsequent five modules, which cover DNA replication, DNA repair, gene regulation, transcription and translation. Throughout this course an emphasis will be placed on how the structure of small molecular machines (proteins) define their function in the processes and pathways that are introduced.

Note: Offered jointly with the Medical School as BP 723.0.

Recommended Prep: Intended primarily for graduate students familiar with basic molecular biology or with strong biology/chemistry background.

Fall 2016

Meeting Dates: Wednesday, August 31, 2016 through Monday, December 5, 2016 (final assignment due December 16, 2016)

First Meeting Location: Cannon Room, Building C

Course Head: Joseph Loparo, joseph_loparo@hms.harvard.edu

Curriculum Fellow: Jason Heustis, ronald_heustis@hms.harvard.edu, (office) 617-432-5773

A full schedule of class meetings, topics covered and the associated reading are presented in the following table.

<table>
<thead>
<tr>
<th>Module/Lecturer</th>
<th>Date & Day</th>
<th>Topic/Event</th>
<th>Associated Reading (Chapters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDENT ORIENTATION</td>
<td>08/23 Tu 10:00 am – 12:00 pm</td>
<td>BBS Core Course Meeting for Students (Cannon Room)</td>
<td></td>
</tr>
<tr>
<td>Module 1 DNA-Protein Interactions LOPARO</td>
<td>08/31 W</td>
<td>Course Introduction Introduction to Protein Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09/02 F Due 10:45 am</td>
<td>Each student in the class must READ AND ELECTRONICALLY SIGN the statement of academic integrity before the start of class. PRE-COURSE Diagnostic Due Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09/07 W</td>
<td>DNA Structure and Topology (switch with lecture 2 possibly)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>09/09 F</td>
<td>Protein-Protein and Protein-DNA Interactions</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>09/12 M</td>
<td>Chromosome Structure</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>09/14 W</td>
<td>TUTORIAL: Using CANVAS Understanding SECTION</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Event Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>09/14</td>
<td>2:30p - 4:00p</td>
<td>Workshop – Using PyMol (SGM 106 A+B) OPTIONAL, but strongly encouraged; choose this workshop OR the 09/15 workshop</td>
<td></td>
</tr>
<tr>
<td>09/15</td>
<td>10:30a - 12:00p</td>
<td>Workshop – Using PyMol (TMEC 106) OPTIONAL, but strongly encouraged; choose this workshop OR the 09/14 workshop</td>
<td></td>
</tr>
<tr>
<td>09/16</td>
<td>F</td>
<td>Research Seminar - Single Molecule Approaches</td>
<td></td>
</tr>
<tr>
<td>09/19</td>
<td>M</td>
<td>SECTION #1 (Various Rooms) EXPERIMENTAL DESIGN WORKSHEET #1, based on the posted experimental design questions for Section #1, is due at the START of section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:45 am - 12:15 pm</td>
<td>Due 10:45am VARIOUS ROOMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Module 2 DNA Replication WALTER</td>
<td></td>
</tr>
<tr>
<td>09/21</td>
<td>W</td>
<td>The Replication Fork</td>
<td></td>
</tr>
<tr>
<td>09/23</td>
<td>F</td>
<td>Origins of Replication</td>
<td></td>
</tr>
<tr>
<td>09/25</td>
<td>Su</td>
<td>PROBLEM SET #1 DUE ONLINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Due 11:59 pm</td>
<td>VARIOUS ROOMS</td>
<td></td>
</tr>
<tr>
<td>09/26</td>
<td>M</td>
<td>Research Seminar – Replication Termination</td>
<td></td>
</tr>
<tr>
<td>09/28</td>
<td>W</td>
<td>SECTION #2 (Various Rooms) EXPERIMENTAL DESIGN WORKSHEET #2, based on the posted experimental design questions for Section #2, is due at the START of section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:45 am - 12:15 pm</td>
<td>Due 10:45 am VARIOUS ROOMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Module 3 DNA Repair WALTER</td>
<td></td>
</tr>
<tr>
<td>09/30</td>
<td>F</td>
<td>Ribonucleotide Excision Repair (RER), Mismatch Repair (MMR)</td>
<td></td>
</tr>
<tr>
<td>10/03</td>
<td>M</td>
<td>Base Excision Repair (BER) Nucleotide Excision Repair (NER)</td>
<td></td>
</tr>
<tr>
<td>10/04</td>
<td>Tu</td>
<td>PROBLEM SET #2 due online</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Due 11:59 pm</td>
<td>VARIOUS ROOMS</td>
<td></td>
</tr>
<tr>
<td>10/05</td>
<td>W</td>
<td>Homologous Recombination (HR) Non-Homologous End Joining (NHEJ)</td>
<td></td>
</tr>
<tr>
<td>10/07</td>
<td>F</td>
<td>Research Seminar – DNA Cross-link Repair</td>
<td></td>
</tr>
<tr>
<td>10/10</td>
<td>M</td>
<td>No CLASS – Columbus Day</td>
<td></td>
</tr>
<tr>
<td>10/12</td>
<td>W</td>
<td>YUSUFZAI LECTURE: Histones and Histone Code This lecture will be videotaped to allow for attendance at the Cell Biology Retreat (October 11th and 12th). This lecture was moved to ensure that Section #3 does not conflict with the Cell Biology Retreat.</td>
<td></td>
</tr>
<tr>
<td>10/14</td>
<td>F</td>
<td>SECTION #3 (Various Rooms) EXPERIMENTAL DESIGN WORKSHEET #3, based on the posted experimental design questions for Section #3, is due at the START of section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Due 10:45 am</td>
<td>VARIOUS ROOMS</td>
<td></td>
</tr>
<tr>
<td>10/17</td>
<td>M</td>
<td>Chromatin Remodeling</td>
<td></td>
</tr>
<tr>
<td>10/19</td>
<td>W</td>
<td>No CLASS – BCMP Retreat</td>
<td></td>
</tr>
<tr>
<td>10/21</td>
<td>F</td>
<td>No CLASS – BCMP Retreat</td>
<td></td>
</tr>
</tbody>
</table>
Please note that class notes from the GEN 201 session on 10/21 will be made available. Please e-mail Fred Winston to receive a copy of the notes.

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Activity Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/24</td>
<td>M</td>
<td>RNA Polymerase II</td>
</tr>
<tr>
<td>10/25</td>
<td>Tu</td>
<td>PROBLEM SET #3 due online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Due 11:59 pm</td>
</tr>
<tr>
<td>10/26</td>
<td>W</td>
<td>Transcription Factors and Initiation</td>
</tr>
<tr>
<td>10/28</td>
<td>F</td>
<td>Gene Regulation</td>
</tr>
<tr>
<td>10/31</td>
<td>M</td>
<td>Research Seminar – Chromatin Remodeling and Cancer</td>
</tr>
<tr>
<td>11/02</td>
<td>W</td>
<td>SECTION #4 (Various Rooms)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Due 10:45 am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXPERIMENTAL DESIGN WORKSHEET #4, based on the posted experimental design questions for Section #4, is due at the START of section.</td>
</tr>
</tbody>
</table>

Module 5

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Activity Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Transcription Elongation</td>
</tr>
<tr>
<td>11/04</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>11/07</td>
<td>M</td>
<td>Transcription Termination</td>
</tr>
<tr>
<td>11/08</td>
<td>Tu</td>
<td>PROBLEM SET #4 due online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Due 11:59 pm</td>
</tr>
<tr>
<td>11/09</td>
<td>W</td>
<td>mRNA Processing</td>
</tr>
<tr>
<td>11/11</td>
<td>F</td>
<td>mRNA Transport</td>
</tr>
<tr>
<td>11/14</td>
<td>M</td>
<td>Research Seminar – Transcription at Single Nucleotide Resolution</td>
</tr>
<tr>
<td>11/16</td>
<td>W</td>
<td>SECTION #5 (Various Rooms)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Due 10:45 am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXPERIMENTAL DESIGN WORKSHEET #5, based on the posted experimental design questions for Section #5, is due at the START of section.</td>
</tr>
</tbody>
</table>

Module 6

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Activity Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RNA Interference: mRNA Repression and Degradation</td>
</tr>
<tr>
<td>11/18</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>11/21</td>
<td>M</td>
<td>Research Seminar – MicroRNAs and DNA Double-Strand Break (DSB) Repair</td>
</tr>
<tr>
<td>11/22</td>
<td>Tu</td>
<td>PROBLEM SET #5 due online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Due 11:59 pm</td>
</tr>
<tr>
<td>11/23</td>
<td>W</td>
<td>No CLASS – Thanksgiving Break</td>
</tr>
<tr>
<td>11/25</td>
<td>F</td>
<td>No CLASS – Thanksgiving Break</td>
</tr>
<tr>
<td>11/28</td>
<td>M</td>
<td>Prokaryotic Translation</td>
</tr>
<tr>
<td>11/30</td>
<td>W</td>
<td>Eukaryotic Translation</td>
</tr>
<tr>
<td>12/02</td>
<td>F</td>
<td>Research Seminar – Divergent Translation Initiation</td>
</tr>
<tr>
<td>12/05</td>
<td>M</td>
<td>SECTION #6 (Various Rooms)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Due 10:45 am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXPERIMENTAL DESIGN WORKSHEET #6, based on the posted experimental design questions for Section #6, is due at the START of section.</td>
</tr>
<tr>
<td>12/11</td>
<td>Su</td>
<td>PROBLEM SET #6 due online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Due 11:59 pm</td>
</tr>
<tr>
<td>12/16</td>
<td>F</td>
<td>POST-COURSE Diagnostic due online</td>
</tr>
</tbody>
</table>

FINAL GRADES WILL BE POSTED NO LATER THAN THURSDAY DECEMBER 22, 2016.
BCMP 218. Molecular Medicine
Irving M. London, George Q. Daley and Vijay Sankaran

4 units. Enrollment limited to 25

(Fall term). Tu., 1:00 – 3:00

A seminar on various human diseases and their underlying genetic or biochemical bases. Primary scientific papers discussed. Lectures by faculty and seminars conducted by students, faculty supervision.

Note: Faculty mentors will guide student-led discussions of the papers. Jointly offered with the Medical School as HT 140.

Prerequisite: Molecular Biology and Biochemistry.

Fall 2016
Meeting Dates: Tuesday, September 13, 2016 through Tuesday, December 13, 2016
First Meeting Location: TMEC 128
Course Head: George Daley, george.daley@childrens.harvard.edu

BCMP 228. Macromolecular NMR

Gerhard Wagner, James Chou and Haribabu Arthanari

4 units

(Fall term) M., F., 2:00 – 3:30

Theory and practice of modern methods of macromolecular structure determination using multi-dimensional NMR.

Note: Given in alternate years. Offered jointly with the Medical School as BP 722.0. Classroom lectures on Mondays and Fridays. The course will include classroom lectures, practical training and hands-on problem solving. The latter includes basic aspects of spectrometer operation, computer-based assignment of protein NMR spectra and structure calculation.

Fall 2016
Meeting Dates: Friday, September 9, 2016 through Friday, December 16, 2016
First Meeting Location: TMEC 227
Course Head: Wagner, Gerhard, gerhard_wagner@hms.harvard.edu
Critical assessment of the major issues and stages of developing a pharmaceutical or biopharmaceutical. Drug discovery, preclinical development, clinical investigation, manufacturing and regulatory issues considered for small and large molecules. Economic considerations of the drug development process.

Note: Classes are held at MIT.

Fall 2016
Meeting Dates: Wednesday, August 31, 2016 through Wednesday, December 14, 2016
First Meeting Location: MIT Bldg., Room 1-190
Course Head: Stan Finkelstein, finkelst@hcp.med.harvard.edu
Cell Biology

Iain A. Drummond and Amar Sahay

4 units. Enrollment limited to 12

(Fall term). F., 2:00 – 5:00

Explores developmental mechanisms through the life cycle, contrasting pluripotency and cell fate restriction in embryos and adult tissues. In depth analysis of in vivo approaches, with emphasis on adult stem cells, tissue repair and self-renewal.

Note: Offered jointly with the Medical School as CB 721.0. For more information visit: http://www2.massgeneral.org/bbs/CB226/cb_226.htm

Prerequisite: Upper division cell biology or equivalent.

Fall 2016
Meeting Dates: Friday, September 2, 2016 through Friday, December 9, 2016
First Meeting Location: TMEC L-007, HMS, 260 Longwood Ave.,
Course Heads: Iain A. Drummond, idrummond@partners.org OR idrummond@mgh.harvard.edu and Amar Sahay, sahay.amar@mgh.harvard.edu.
An in-depth survey of genetics, beginning with basic principles and extending to modern approaches and special topics. We will draw on examples from various systems, including yeast, Drosophila, C. elegans, zebrafish, mouse, human and bacteria.

Note: Intended for first-year graduate students. Offered jointly with the Medical School as GN 701.0.

Fall 2016
Meeting Dates: Wednesday, August 31, 2016 through Thursday, December 8, 2016 (final exam due)
First Meeting Location: Cannon Room, Building C
Course Heads: Fred Winston (Winston@genetics.med.harvard.edu) and Max Heiman (heiman@genetics.med.harvard.edu)
Curriculum Fellow: Emily Gleason, Emily_gleason@hms.harvard.edu, 617-432-7203

GENETICS 201: 2016 SCHEDULE

<table>
<thead>
<tr>
<th>DATE</th>
<th>START</th>
<th>FINISH</th>
<th>LECTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-Aug</td>
<td>W 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 1: Introduction to yeast genetics, complementation analysis – Winston</td>
</tr>
<tr>
<td>02-Sept</td>
<td>F 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 2: Introduction to yeast genetics, complementation analysis – Winston</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Problem Set 1 Distributed</td>
</tr>
<tr>
<td>05-Sept</td>
<td>M</td>
<td></td>
<td>Labor Day: No Classes</td>
</tr>
<tr>
<td>07-Sept</td>
<td>W 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 3: Linkage and tetrad analysis in yeast – Winston</td>
</tr>
<tr>
<td>09-Sept</td>
<td>F 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 4: Molecular studies in yeast – Winston</td>
</tr>
<tr>
<td>12-Sept</td>
<td>M 9:00 AM</td>
<td>10:20 AM</td>
<td>Discussion Section 1</td>
</tr>
<tr>
<td>14-Sept</td>
<td>W 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 5: Genomic analysis in yeast – Winston</td>
</tr>
<tr>
<td>16-Sept</td>
<td>F 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 6: Suppressor analysis in yeast – Winston</td>
</tr>
<tr>
<td>19-Sept</td>
<td>M 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 7: Non-Mendelian and polygenic inheritance in yeast – Winston</td>
</tr>
<tr>
<td>21-Sept</td>
<td>W 9:00 AM</td>
<td>10:20 AM</td>
<td>Discussion Session 2</td>
</tr>
<tr>
<td>23-Sept</td>
<td>F 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 8: Introduction to bacterial genetics – Bernhardt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Problem Set 1 Due</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Problem Set 2 Distributed</td>
</tr>
<tr>
<td>26-Sept</td>
<td>M 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 9: Genetic selections and screens for gene discovery – Bernhardt</td>
</tr>
<tr>
<td>28-Sept</td>
<td>W 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 10: Chemical genetics and antibiotics – Bernhardt</td>
</tr>
<tr>
<td>30-Sept</td>
<td>F 9:00 AM</td>
<td>10:20 AM</td>
<td>Lecture 11: Genetics of bacterial pathogenesis – Bernhardt</td>
</tr>
<tr>
<td>03-Oct</td>
<td>M 9:00 AM</td>
<td>10:20 AM</td>
<td>Discussion Section 3</td>
</tr>
<tr>
<td>Date</td>
<td>Day</td>
<td>Time</td>
<td>Event</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>05-Oct</td>
<td>W</td>
<td>9:00 AM</td>
<td>Computational Workshop 1: Using Galaxy for DNA sequence analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:20 AM</td>
<td>Problem Set 2 Due</td>
</tr>
<tr>
<td>05-Oct</td>
<td>W</td>
<td>6:00 PM</td>
<td>Optional Review Session</td>
</tr>
<tr>
<td>06-Oct</td>
<td>Th</td>
<td>9:00 AM</td>
<td>Midterm handed out</td>
</tr>
<tr>
<td>07-Oct</td>
<td>F</td>
<td>9:00 AM</td>
<td>Midterm handed in</td>
</tr>
<tr>
<td>10-Oct</td>
<td>M</td>
<td>9:00 AM</td>
<td>NO CLASS Columbus Day</td>
</tr>
<tr>
<td>12-Oct</td>
<td>W</td>
<td>9:00 AM</td>
<td>Lecture 12: How to do a C. elegans screen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:20 AM</td>
<td>Problem Set 3 Distributed</td>
</tr>
<tr>
<td>14-Oct</td>
<td>F</td>
<td>9:00 AM</td>
<td>Lecture 13: From mutant to gene in C. elegans – Heiman</td>
</tr>
<tr>
<td>17-Oct</td>
<td>M</td>
<td>9:00 AM</td>
<td>Lecture 14: How to study animal development using C. elegans – Heiman</td>
</tr>
<tr>
<td>19-Oct</td>
<td>W</td>
<td>9:00 AM</td>
<td>Lecture 15: How to study cell biology and the nervous system using C. elegans – Heiman</td>
</tr>
<tr>
<td>21-Oct</td>
<td>F</td>
<td>9:00 AM</td>
<td>Discussion Section 4</td>
</tr>
<tr>
<td>24-Oct</td>
<td>M</td>
<td>9:00 AM</td>
<td>Lecture 16: Introduction to Drosophila: genotypes, recombination, and balancer chromosomes – Kuroda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:20 AM</td>
<td>Problem Set 3 Due</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Problem Set 4 Distributed</td>
</tr>
<tr>
<td>26-Oct</td>
<td>W</td>
<td>9:00 AM</td>
<td>Lecture 17: Forward genetic screens in Drosophila – Kuroda</td>
</tr>
<tr>
<td>28-Oct</td>
<td>F</td>
<td>9:00 AM</td>
<td>Lecture 18: Modifier and mosaic screens in Drosophila – Kuroda</td>
</tr>
<tr>
<td>31-Oct</td>
<td>M</td>
<td>9:00 AM</td>
<td>Discussion Section 5</td>
</tr>
<tr>
<td>02-Nov</td>
<td>W</td>
<td>9:00 AM</td>
<td>Lecture 19: Vertebrate genetics 1 – Galloway</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:20 AM</td>
<td>Problem Set 4 Due</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Problem Set 5 Distributed</td>
</tr>
<tr>
<td>04-Nov</td>
<td>F</td>
<td>9:00 AM</td>
<td>Lecture 20: Vertebrate genetics 2 – Galloway</td>
</tr>
<tr>
<td>07-Nov</td>
<td>M</td>
<td>9:00 AM</td>
<td>Lecture 21: Vertebrate genetics 3 – Galloway</td>
</tr>
<tr>
<td>09-Nov</td>
<td>W</td>
<td>9:00 AM</td>
<td>Discussion Section 6</td>
</tr>
<tr>
<td>11-Nov</td>
<td>F</td>
<td>9:00 AM</td>
<td>Veterans’ Day: No Classes</td>
</tr>
<tr>
<td>14-Nov</td>
<td>M</td>
<td>9:00 AM</td>
<td>Lecture 22: Genome variation in humans – McCarroll</td>
</tr>
<tr>
<td>16-Nov</td>
<td>W</td>
<td>9:00 AM</td>
<td>Lecture 23: Genetics in families and the analysis of Mendelian traits – McCarroll</td>
</tr>
<tr>
<td>18-Nov</td>
<td>F</td>
<td>9:00 AM</td>
<td>Lecture 24: Complex traits, heritability, and the genetics of populations – McCarroll</td>
</tr>
<tr>
<td>21-Nov</td>
<td>M</td>
<td>9:00 AM</td>
<td>Lecture 25: Mapping the genetic basis of complex phenotypes – McCarroll</td>
</tr>
<tr>
<td>21-Nov</td>
<td>M</td>
<td>3:00 PM</td>
<td>4:30 PM</td>
</tr>
<tr>
<td>25-Nov</td>
<td>W</td>
<td></td>
<td>Thanksgiving Break: No Class</td>
</tr>
<tr>
<td>27-Nov</td>
<td>F</td>
<td></td>
<td>Thanksgiving Break: No Class</td>
</tr>
<tr>
<td>28-Nov</td>
<td>M</td>
<td>9:00 AM</td>
<td>Discussion Section 7</td>
</tr>
<tr>
<td>30-Nov</td>
<td>W</td>
<td>9:00 AM</td>
<td>Lecture 26: Epigenetics 1 – Winston</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:20 AM</td>
<td>Problem Set 5 due</td>
</tr>
<tr>
<td>02-Dec</td>
<td>F</td>
<td>9:00 AM</td>
<td>Lecture 27: Epigenetics 2 – Winston</td>
</tr>
<tr>
<td>05-Dec</td>
<td>M</td>
<td>9:00 AM</td>
<td>Discussion Section 8</td>
</tr>
<tr>
<td>05-Dec</td>
<td>M</td>
<td>6:00 PM</td>
<td>Optional Review Session</td>
</tr>
<tr>
<td>07-Dec</td>
<td>W</td>
<td>9:00 AM</td>
<td>Final exam handed out</td>
</tr>
<tr>
<td>08-Dec</td>
<td>Th</td>
<td>9:00 AM</td>
<td>Final exam due</td>
</tr>
</tbody>
</table>

Problem Set 2 Due
Problem Set 4 Distributed
Problem Set 5 Distributed
Problem Set 4 Due
Problem Set 5 Distributed
Problem Set 5 due
Problem Set 4 due
Problem Set 5 due
Problem Set 5 due
Genetics 229 Computational Statistics for Biomedical Sciences
Peter Park and Vincent Carey

4 units. Enrollment limited to 60 students

(Fall term). Tu., Th., 10:00 – 11:30

Analysis of large datasets has become an integral part of biological and biomedical sciences. This course will provide a practical introduction to data analysis, with high-throughput sequencing data as the main source of examples. In the first half, it will cover basic statistical concepts and techniques, including hypothesis testing, nonparametric methods, principal component analysis, correlation analysis, and linear regression. In the second half, it will cover several advanced topics, focusing on issues that one encounters in the literature but are seldom covered in introductory statistics courses. To carry out statistical tests and visualize data, students will learn R, a powerful programming language for statistical computing and graphics. The class will be a combination of lectures and computer labs. We will use recent literature to motivate the statistical methods, and assignments will frequently include attempts to reproduce published findings.

Note: Offered jointly with Medical School as BMI713.0.

Fall 2016
Meeting Dates: Tuesday, September 6, 2016 through Thursday, December 8, 2016
First Meeting Location: TMEC 227
Course Head: Peter Park, peter_park@hms.harvard.edu
Human Biology and Translational Medicine

HBTM 235. Principles of Human Disease: Physiology and Pathology
Constance L. Cepko

4 units

(Fall term). M., W., F., 9:00 – 10:30 lectures, M., W., 9:00 – 10:30 tutorial (select dates)

This course covers the normal physiology and pathophysiology of selected organs, through lectures, readings, tutorials based on clinical cases, and patient presentations. Human biology is emphasized, with some examples also drawn from model organisms. Recent therapeutic approaches, including RNAi, gene therapy, and genome editing will be covered.

Note: Course enrollment is open to graduate students from any program as well as undergraduates.

Prerequisite: Knowledge of introductory biochemistry, molecular biology, and cell biology required (MCB52 and MCB54 or equivalent and one year of organic chemistry for undergraduates).

Fall 2016
Meeting Dates: Wednesday, August 31, 2016 through Friday, December 2, 2016
First Meeting Location: NRB 350
Course Head: Connie Cepko, cepko@genetics.med.harvard.edu
Immunology

Immunology 201, Principles of Immunology
Thorsten Mempel, Michael Carroll, Ulrich H. Von Andrian and members of the Program in Immunology

4 units. Enrollment limited to 50

(Fall term). Tu., Th., 1:30 – 3:00pm (Discussion groups: 3:00-4:00pm)

Comprehensive core course in immunology. Topics include a broad but intensive examination of the cells and molecules of the immune system. Special attention given to the experimental approaches that led to general principles of immunology.

Note: Intended for students who have had prior exposure to immunology on the undergraduate level. In the absence of such exposure, students must obtain the permission of the Course Director. Offered jointly with the Medical School as IM 702.0.

Prerequisite: A background in genetics and biochemistry strongly recommended.

Fall 2016
Course Introduction: Wednesday, August 31, 2016
Meeting Dates: Wednesday, August 31, 2016 through Thursday, December 1, 2016
First Meeting Location: Modell Immunology Center, Fred S. Rosen Lecture Hall, Room 100A
Course Heads: Thorsten Mempel, tmempel@mgh.harvard.edu and Ulrich H. Von Andrian, uva@hms.harvard.edu

Immunology 301, Immunology Seminar
Michael C. Carroll, William Nicholas Haining and Galit Alter

4 units. Enrollment limited to 20

(Fall term). W. 12:15 – 1:15 (lunch) and 3:30 – 5:00 (discussion)

Gives students exposure to research topics in Immunology. Students prepare for the weekly seminar through readings, discussions, and preparing brief write-ups. These discussions are facilitated by members of the Committee on Immunology.

Note: Required for, and limited to, first-year Immunology graduate students.

Fall 2016
Meeting Dates: Wednesday, August 24, 2016 through Wednesday, December 14, 2016
First Meeting Location: Modell Immunology Center, Room 100A
Course Head: Michael Carroll, michael.carroll@childrens.harvard.edu and William Nicholas Haining, nicholas_haining@dfci.harvard.edu
Medical Sciences

Medical Sciences 250ab. Human Functional Anatomy
Lee Gehrke, Trudy Van Houten, Breda Zimkus, Mohini Lutchman and Sabine Hildebrandt

8 units. Enrollment limited to 40

(Fall term). Lectures, M., W., F., 1:30 – 2:30, laboratory, M., W., F., 2:30 – 6:00

Lectures, detailed laboratory dissections, and prosections provide a thorough exploration of the gross structure and function of the human body. Fundamental principles of embryology and bioengineering promote analytical approaches to understanding the body’s design.

Note: Open to qualified graduate students with permission of the course director. The course has a minimum enrollment of 30. This course requires rental of a locker for two hundred and ten dollars. There will also be an additional fee for microscope rental. Offered jointly with the Medical School as HT010.

Fall 2016
Meeting Dates: Wednesday, September 7, 2016 through Friday, December 16, 2016 (final exam)
First Meeting Location: D Amphitheater
Course Head: Trudy Van Houten, trudy_vanhouten@hms.harvard.edu and Breda Zimkus, Zimkus, bzimkus@oeb.harvard.edu
Microbiology and Immunobiology

Microbiology 205, Mechanisms of Microbial Pathogenesis
Clyde S. Crumpacker II and members of the Department

4 units. Enrollment limited to 40

(Fall term). Tu., Th., 8:30 – 12:30

The mechanisms of bacterial, mycoplasmal, fungal, and viral pathogenesis are covered. Topics are selected for intrinsic interest and cover the spectrum of pathophysiologic mechanisms of the infectious process. Emphasis on pathogenesis at the molecular level.

Note: Offered jointly with the Medical School as HT 040. Please note that there will be an additional fee for microscope rental.

Prerequisite: A background course in molecular biology is strongly encouraged.

Fall 2016
Meeting Dates: Tuesday, September 6, 2016 through Thursday, December 8, 2016
First Meeting Location: TMEC 250
Course Head: Clyde S. Crumpacker, ccrumpac@bidmc.harvard.edu

Microbiology 214, Mechanisms of Bacterial Pathogenesis and Host Immune Response
Marcia Goldberg, Jonathan Kagan, Michael Starnbach and Cammie Lesser

4 units

(Fall term). Tu., Th., 10:00 – 12:00

This course focuses on molecular mechanisms of bacterial pathogenesis and the host response to infection. The class consists of lectures and group discussions emphasizing methods, results, and interpretations of classic and contemporary literature. The course is designed to complement Microbiology 201.

Note: Designed for graduate students in first year or beyond, however undergraduates with specific interest in the field may audit.

Fall 2016
Meeting Dates: Thursday, September 1, 2016 through Thursday, December 1, 2016
First Meeting Location: NRB 1031
Course Head: Marcia Goldberg, marcia.goldberg@mgh.harvard.edu
Curriculum Fellow: Bradley Coleman, bradley coleman@hms.harvard.edu
(617)432-1871
Neurobiology

Neurobiology 200. Neurobiology
John A. Assad and Matthew P. Frosch

4 units. Enrollment limited to 60

(Fall term). M., W., F., 8:30 – 12:00

This is a comprehensive course in Neuroscience. Basic principles of organization and function of the nervous system will be discussed with frequent reference to pathophysiology of neurological and psychiatric disorders. Combining pathophysiology with basic neuroscience should provide physician/scientists and Ph.D. candidates with a dynamic picture of the rapidly evolving field of neuroscience and the experimental process from which the picture is derived, and all students should emerge with a greater awareness both of the applications of their work in alleviating disease, and of the ways that disease can provide insight into basic scientific questions. The course will span modern neuroscience from molecular neurobiology to perception and cognition, and will include the following major topics: Anatomy and Development of the Brain, Cell Biology of Neurons and Glia, Ion Channels and Electrical Signaling, Synaptic Transmission, Integration, and Chemical Systems of the Brain, Sensory Systems, from Transduction to Perception, Motor Systems, and Higher Brain Function (Memory, Language, Affective Disorders).

Note: Offered jointly with Harvard Medical School as HST 130. Follows the HMS calendar. Nine hours of lecture or lab/conference weekly.

Prerequisite: Introductory cell and molecular biology course with permission of instructor.

Fall 2016
Meeting Dates: Wednesday, September 7, 2016 through Friday, December 16, 2016 (final exam, Wednesday, December 21)
First Meeting Location: TMEC 227
Course Heads: John Assad, jassad@hms.harvard.edu, (617) 432-2804 and Matthew Frosch, mfrosch@partners.org, (617) 726-5156
Neurobiology 220. Cellular Neurophysiology
Bruce P. Bean, Wade G. Regehr, Bernardo L. Sabatini, and Gary I. Yellen

4 units

(Fall term). Tu., Th., 9:00 –12:00

Introduction to the physiology of neurons, focusing on using electrophysiology and imaging to study function of ion channels, generation of action potentials, and physiology of synaptic transmission. Includes problem sets and reading of original papers.

Note: Offered jointly with the Medical School as NB 714.0.

Prerequisite: Introductory neurobiology.

Fall 2016

Meeting Dates: Tuesday, September 6, 2016 through Thursday, December 15, 2016

First Meeting Location: Goldenson 122

Course Head: Bruce P. Bean, bruce_bean@hms.harvard.edu

Neurobiology 230. Visual Recognition: Computational and biophysical perspective
Gabriel Kreiman

4 units

(Fall term). M., 3:30–5:30 (first meeting on Wednesday)

How does cerebral cortex store information, compute and learn? How can we build prosthetic devices to fix or augment brain function? How can we build biologically inspired artificial intelligence? This course will examine these questions in the context of visual cognition. Topics: architecture of visual cortex, neurophysiology, visual consciousness, computational neuroscience, models of pattern recognition and computer vision, artificial intelligence, brain-machine interfaces.

Note: Neuro 230 cannot be taken if Neuro 130 has been taken. Neuro 230 cannot be taken concurrently with Neuro 130.

Course Website: Neurobiology 230, Visual Recognition, brain-machine interfaces and artificial intelligence
http://klab.tch.harvard.edu/academia/classes/hms_neuro300_vision/hms_neuro300_vision.html

Prerequisite: Life Sciences 1a (or Life and Physical Sciences A) and Life Sciences 1b (or equivalent).
Recommended: Math (Maa/Mab, Math 1A, 1B, Math 19 a/or equivalent). Physical Sciences 1. MCB 80.

Fall 2016

First Meeting Date: Wednesday, August 31, 2016

Meeting Dates: Wednesday, August 31, 2016 through Monday, December 5, 2016

First Meeting Location: Biolabs 1075, HU, Cambridge

Course Head: Gabriel Kreiman, gabriel.kreiman@childrens.harvard.edu, (617) 919-2530
Speech and Hearing Bioscience and Technology

SHBT 200. Acoustics, Production, and Perception of Speech
Satrajit Ghosh and Hideko Heidi Nakajima

4 units. Enrollment limited to 20

(Fall term). Lectures, Tu., Th., 1–2:30, recitations, W., 1:00 – 2:00

Reviews the physical processes involved in the production and propagation of sound, and acoustics related to hearing. Particular attention to how the acoustics and mechanics of the speech and auditory system define what sounds we are capable of producing and how we sense sound. Introduces acoustic theory of speech production, digital speech processing, and neural mechanisms of speech production and perception. Exposes students to applications around acoustics, recognition, and speech disorders. Also introduces analysis of various types of sounds. Includes take-home laboratory assignments and discussions of classic papers.

Note: This course is taught in consort with HSTU.714J at the Massachusetts Institute of Technology. Classes will be held at MIT. Must have a minimum of 5 students

Prerequisite: Mathematical methods in science (Applied Mathematics 21a or Mathematics 21a) or equivalent. Rigid body mechanics (Physics 11A), or electrical circuits (Engineering Science 154) or permission of the instructor

Fall 2016
First Meeting: Wednesday, September 7, 2016
Meeting Dates: Wednesday, September 7, 2016 through Wednesday, December 14, 2016
First Meeting Location: MIT Building 46-4199
Course Heads: Satrajit Ghosh, satra@mit.edu and Hideko Nakajima, hhn@epl.meei.harvard.edu
Course Website: http://web.mit.edu/6.551j/www/

SHBT 201. Biology of the Inner Ear
M. Charles Liberman and Stephane Maison

4 units. Enrollment limited to 12.

(Fall term). Tu., Th., 9–10:30

Normal biology, biophysics, physiology and morphology of the inner ear, its sensory innervation and efferent control systems, and the mechanisms underlying sensorineural hearing loss and balance disorders. Material is presented through lectures, laboratory exercises and discussions of the primary literature.

Prerequisite: Introductory neurobiology recommended.

Fall 2016
Meeting Dates: Thursday, September 1, 2016 through Tuesday, December 6, 2016,
First Meeting Location: Massachusetts Eye and Ear Infirmary, 4th floor library
Course Head: Charles Liberman, charles_liberman@meei.harvard.edu
Virology

Virology 200. Introduction to Virology
Max L. Nibert, David M. Knipe and Priscilla L. Yang

4 units. Enrollment limited to 20.

(Fall term). W., 9:00 – 10:30, F., 8:30 – 10:30

Introduction to virology. The lecture component reviews the basic principles of virology and introduces the major groups of human viruses. Weekly discussion groups critically analyze selected papers from the literature. Weekly written critiques of the selected papers are also required.

Note: There will be mid-term and final projects consisting of proposals based on laboratory rotations. Offered jointly with the Medical School as MG 705.0.

Fall 2016
Meeting Dates: Wednesday, September 7, 2016 through Friday, December 9, 2016
First Meeting Location: TMEC 423
Course Head: Max Nibert, max_nibert@hms.harvard.edu

Virology 202. Proposal Writing

Benjamin Gewurz, James DeCaprio, Daniel Lingwood, Sylvie LeGall and Molly Mclaughlin-Drubin

4 units. Enrollment limited to 12

(Fall term). W., 1:45–5:00

Students will write, present, and evaluate research proposals in the areas of virus replication, viral pathogenesis and treatment and prevention of viral infections.

Note: Offered jointly with the Medical School as MG 724.0.

Prerequisite: General background in biochemistry and virology.

Fall 2016
Meeting Dates: Wednesday, September 7, 2016 through Wednesday, November 9, 2016
First Meeting Location: TMEC 446
Course Head: Benjamin Gewurz, bgewurz@partners.org
Other Courses of Interest

OEB 115. The Developmental Basis for Evolutionary Change
Mansi Srivastava

4 units.

(Fall Term) Tu., Th., 10:00 - 11:30 F. 10:00 – 11:30 (discussion)

A lecture course in evolutionary developmental biology. This course will focus on the molecular and cellular bases of how embryos generate adult body plans in order to understand how form, physiology, and life history strategies are modulated over the course of evolution. We will discuss insights from both invertebrate and vertebrate animal model systems as well as plants. We will investigate the forces driving change at both micro- and macro-evolutionary time scales. Particular emphasis will be placed on how changes in development underlie major evolutionary transitions and the origin of innovation in organismal evolution. The course will also emphasize learning of experimental design, molecular tools, and phylogenetic methods currently used by researchers in the field of evolutionary developmental biology.

Recommended Prep: Life Sciences 1a (or LPS A) and 1b, or permission of instructor. OEB 10, MCB 52, and MCB 54 are recommended but not required. Open to students from any concentration.

Fall 2016
Meeting Dates: September 1, 2016 through December 20, 2016
Location: TBD
Course Head: Mansi Srivastava, mansi@oeb.harvard.edu